Name:	Points:	

Prof. K. C. Nicolaou
CHEM 151 - Molecules that Changed the World
UCSD, Department of Chemistry and Biochemistry

Final Exam March 19, 2009

1. Match the following **names** with the appropriate **structure**: ginkgolide B, amphotericin B, rapamycin, brevetoxin B, Taxol®, palytoxin, calicheamicin γ_1^I , epothilone B, vancomycin, resiniferatoxin (20 points)

2. Match each of the following **medicines** with the appropriate molecular **structure** and **mechanism of action**: Nexium[®], AZT (Retrovir[®]), Valium[®], Viagra[®], Prozac[®] (15 points)

Molecular Structure

Mechanism of Action

A. Inhibits phosphodiesterase type5 (PDE5), an enzyme that cleaves and inactivates the messenger cyclic quanosine monophosphate (cQMP)

B. Binds to GABA receptors

C. Inhibits serotonin re-uptake, leading to higher levels of the neurotransmitter in the synapse

D. Inhibits the HIV enzyme reverse transcriptase

E. Blocks the H^{\oplus}/K^{\oplus} -ATPase, an enzyme that pumps acid into the stomach

Medical Indication

I. antidepressant drug

II. erectile dysfunction drug

III. antianxiety drug

IV. anti-ulcer drug

V. anti-AIDS drug

I indication for each (15 points).
Biotechnology companies:
1
2
Indication:
cines and indicate their medical indication (10 points).
Indication:

3. Name three (3) major **pharmaceutical** companies and two (2) successful **biotechnology** companies as well

5. Name one Nobel Laureate associated with the following	ng (20 points):
1. Fundamental studies on the biochemistry of nucleic acids with particular regard to recombinant DNA	
2. Contributions concerning the determination of base sequences in nucleic acids	
3. Development of methodology for chemical synthesis on a solid matrix	
4. Development and use of molecules with structure-specific interactions of high selectivity	
5. Contributions to carbocation chemistry	
6. Fundamental contributions to the establishment of oligonucleotide-based, site-directed mutagenesis and its development for protein studies	
7. Conformation and its application in chemistry	
8. Research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances	
9. Work on the structure of proteins, especially that of insulin	
10. Invention of the polymerase chain reaction (PCR) method	

6. Name (type of reaction and scientist associated with it) each of the following reactions and give the structure of the product (in box) in each case (20 points).
$ \begin{array}{c} D \\ \hline $
1
Ti(Oi-Pr) ₄ (cat.), t-BuOOH OH EtO ₂ C OH L-(+)-diethyltartrate (cat.) Ti(Oi-Pr) ₄ (cat.), t-BuOOH EtO ₂ C O ₂ Et OH D-(-)-diethyltartrate (cat.)
OMe OTBS Ph MeO (cat.) H ₂ (3 atm) (100 % yield, 96 % ee)
Me n-Bu ₂ BOTf, Et ₃ N X Me h Me H Me 99 % yield, >99 % de oxazolidinone auxiliary
Mes N N Mes ClimRu Ph PCy3 (cat.)

roles played by biologists and biochemists , medicinal chemists , process chemists , pharmacologists , a dical doctors (20 points).						igists, a